رایانهٔ کوانتومی ماشینی است که از پدیده ها و قوانین مکانیک کوانتوم مانند برهم نهی (Superposition) و درهم تنیدگی (Entanglement) برای انجام محاسباتش استفاده می کند.کامپیوترهای کوانتومی با کامپیوترهای فعلی که با ترانزیستورها کار می کنند تفاوت اساسی دارند. ایده اصلی که در پس کامپیوترهای کوانتومی نهفته است این است که می توان از خواص و قوانین فیزیک کوانتوم برای ذخیره سازی و انجام عملیات روی داده ها استفاده کرد. یک مدل تئوریک و انتزاعی از این ماشین ها، ماشین تورینگ کوانتومی (Quantum Turing Machine) است که کامپیوتر کوانتومی جهانی (Universal Quantum Computer) نیز نامیده می شود.
کریس مونرو و همکارانش در دانشگاه میشیگان برای ذخیره اطلاعات با استفاده از حالت مغناطیسی اتم از یک اتم کادمیم به دام افتاده در میدان الکتریکی استفاده کردند. در این روش انرژی توسط یک لیزر به درون اتم پمپاژ شده و اتم وادار به گسیل فوتونی می شود که رونوشتی از اطلاعات اتم را دربردارد و توسط آشکارساز قابل تشخیص است.
ذخیره اطلاعات در رایانه ها به صورت سری هایی از بیت های با حالت های روشن و خاموش صورت می گیرد. در اتم کادمیم در صورتی که میدان های مغناطیسی کوچک هسته و الکترون های بیرونی در یک جهت قرار بگیرند روشن و در خلاف جهت خاموش محسوب می شوند. کریس مونرو گفته است: اتم کادمیم در هریک از این حالات که باشد می تواند هزاران سال در همان حالت بماند.
اگر چه محاسبات کوانتومی تازه در ابتدای راه قرار دارد، اما آزمایش هایی انجام شده که در طی آن ها عملیات محاسبات کوانتومی روی تعداد بسیار کمی از کوبیت ها اجرا شده است. تحقیقات نظری و عملی در این زمینه ادامه دارد و بسیاری از موسسات دولتی و نظامی از تحقیقات در زمینه کامپیوترهای کوانتومی چه برای اهداف غیرنظامی و چه برای اهداف امنیتی (مثل تجزیه و تحلیل رمز، Cryptanalysis) حمایت می کنند.اگر کامپیوترهای کوانتومی در مقیاس بزرگ ساخته شوند، می توانند مسائل خاصی را با سرعت خیلی زیاد حل کنند (برای مثال الگوریتم شُور، Shor's Algorithm). البته باید توجه داشت که توابعی که توسط کامپیوترهای کلاسیک محاسبه پذیر (Computable) نیستند، توسط کامپیوترهای کوانتومی نیز محاسبه پذیر نخواهند بود. این کامپیوترها نظریه چرچ-تورینگ را رد نمی کنند. کامپیوترهای کوانتومی فقط برای ما سرعت بیشتر را به ارمغان می آورند.
تعریف سادهٔ نقطهٔ کوانتومی این است که یک ذره مادی کوچک، که افزایش یا کاهش یک الکترون خواص آن را به نحو ارزشمندی تغییر دهد.البته اتم ها نقطه کوانتومی محسوب می شوند، ولی توده های چندمولکولی نیز چنین اند. در زیست شیمی، نقاط کوانتومی گروه های اکسیداسیون-احیا خوانده می شوند.در نانوتکنولوژی به آن ها بیت های کوانتومی یا کیوبیت گفته می شود. اندازه آن ها در حد چند نانومتر است و از انواع مواد همچون سلنید کادمیوم -که رنگ های مختلفی را تولید می کند- ساخته می شوند. کاربردهای بالقوه آن ها در مخابرات و اپتیک است. نانوذرات فلورسنت -که تا پیش از تابش ماوراءبنفش نامرئی هستند- ساختار نانوبلوری قادر به تغییر رنگ از دیگر تعاریف آنهاست. نقاط کوانتومی از دیگر مواد فلورسنت انعطاف بیشتری دارد؛ لذا استفاده از آن ها در ساخت کامپیوترهای نانومقیاس بهره گیرنده از نور برای پردازش اطلاعات مناسب است.
رؤیای محاسبات ماشینی یا ماشینی که بتواند مسائل را در اشکال گوناگون حل کند کمتر از دو قرن است که زندگی بشر را به طور جدی دربر گرفته است. اگر از ابزارهایی نظیر چرتکه و برخی تلاش های پراکنده دیگر در این زمینه بگذریم، شاید بهترین شروع را بتوان به تلاش های «چارلز بابیج» و «بلز پاسکال» با ماشین محاسبه مکانیکی شان نسبت داد. با گذشت زمان و تا ابتدای قرن بیستم تلاش های زیادی جهت بهبود ماشین محاسب مکانیکی صورت گرفت که همه آن ها بر پایه ریاضیات دهدهی (decimal) بود، یعنی این ماشین ها محاسبات را همان طور که ما روی کاغذ انجام می دهیم انجام می دادند. اما تحول بزرگ در محاسبات ماشینی در ابتدای قرن بیستم شروع شد. این زمانی است که الگوریتم و مفهوم فرایندهای الگوریتمی (algorithmic processes) به سرعت در ریاضیات و به تدریج سایر علوم رشد کرد. ریاضیدانان شروع به معرفی سیستم های جدیدی برای پیاده سازی الگوریتمی کلی کردند که در نتیجه آن، سیستم های انتزاعی محاسباتی به وجود آمدند. در این میان سهم برخی بیشتر از سایرین بود.آنچه امروزه آن را دانش کامپیوتر یا الکترونیک دیجیتال می نامیم مرهون و مدیون کار ریاضیدان برجسته انگلیسی به نام «آلن تورینگ» (Alan Turing) است. وی مدلی ریاضی را ابداع کرد که آن را ماشین تورینگ می نامیم و اساس تکنولوژی دیجیتال در تمام سطوح آن است. وی با پیشنهاد استفاده از سیستم دودویی برای محاسبات به جای سیستم عددنویسی دهدهی که تا آن زمان در ماشین های مکانیکی مرسوم بود، انقلابی عظیم را در این زمینه به وجود آورد. پس از نظریه طلایی تورینگ، دیری نپایید که «جان فون نویمان» یکی دیگر از نظریه پردازان بزرگ قرن بیستم موفق شد ماشین محاسبه گری را بر پایه طرح تورینگ و با استفاده از قطعات و مدارات الکترونیکی ابتدایی بسازد. به این ترتیب دانش کامپیوتر به تدریج از ریاضیات جدا شد و امروزه خود زمینه ای مستقل و در تعامل با سایر علوم به شمار می رود. گیتهای پیشرفته، مدارات ابر مجتمع، منابع ذخیره و بازیابی بسیار حجیم و کوچک، افزایش تعداد عمل در واحد زمان و غیره از مهم ترین این پیشرفت ها در بخش سخت افزاری محسوب می شوند. در ۱۹۶۵ «گوردون مور» اظهار کرد که توان کامپیوترها هر دو سال دو برابر خواهد شد. در تمام این سال ها، تلاش عمده در جهت افزایش قدرت و سرعت عملیاتی در کنار کوچک سازی زیر ساختها و اجزای بنیادی بوده است. نظریه مور در دهه های ۶۰ و ۷۰ میلادی تقریباً درست بود. اما از ابتدای دهه ۸۰ میلادی و با سرعت گرفتن این پیشرفت ها، شبهات و پرسش هایی در محافل علمی مطرح شد که این کوچک سازی ها تا کجا می توانند ادامه پیدا کنند؟ کوچک کردن ترازیستورها و مجتمع کردن آن ها در فضای کمتر نمی تواند تا ابد ادامه داشته باشد زیرا در حدود ابعاد نانومتری اثرات کوانتومی از قبیل تونل زنی الکترونی بروز می کنند. گرچه همیشه تکنولوژی چندین گام بزرگ از نظریه عقب است، بسیاری از دانشمندان در زمینه های مختلف به فکر رفع این مشکل تا زمان رشد فناوری به حد مورد نظر افتادند. به این ترتیب بود که برای نخستین بار در سال ۱۹۸۲ «ریچارد فاینمن» معلم بزرگ فیزیک و برنده جایزه نوبل، پیشنهاد کرد که باید محاسبات را از دنیای دیجیتال وارد دنیای جدیدی به نام کوانتوم کرد که بسیار متفاوت از قبلی است و نه تنها مشکلات گذشته و محدودیت های موجود را بر طرف می سازد، بلکه افق های جدیدی را نیز به این مجموعه اضافه می کند. این پیشنهاد تا اوایل دهه ۹۰ میلادی مورد توجه جدی قرار نگرفت تا بالاخره در ۱۹۹۴ «پیتر شور» از آزمایشگاه AT&T در آمریکا نخستین گام را برای محقق کردن این آرزو برداشت. به این ترتیب ارتباط نوینی بین نظریه اطلاعات و مکانیک کوانتومی شروع به شکل گیری کرد که امروز آن را محاسبات کوانتومی یا محاسبات نانومتری (nano computing) می نامیم. در واقع هدف محاسبات کوانتومی یافتن روش هایی برای طراحی مجدد ادوات شناخته شده محاسبات (مانند گیت ها و ترانزیستورها) به گونه ایست که بتوانند تحت اثرات کوانتومی، که در محدوده ابعاد نانومتری و کوچکتر بروز می کنند، کار کنند.
کریس مونرو و همکارانش در دانشگاه میشیگان برای ذخیره اطلاعات با استفاده از حالت مغناطیسی اتم از یک اتم کادمیم به دام افتاده در میدان الکتریکی استفاده کردند. در این روش انرژی توسط یک لیزر به درون اتم پمپاژ شده و اتم وادار به گسیل فوتونی می شود که رونوشتی از اطلاعات اتم را دربردارد و توسط آشکارساز قابل تشخیص است.
ذخیره اطلاعات در رایانه ها به صورت سری هایی از بیت های با حالت های روشن و خاموش صورت می گیرد. در اتم کادمیم در صورتی که میدان های مغناطیسی کوچک هسته و الکترون های بیرونی در یک جهت قرار بگیرند روشن و در خلاف جهت خاموش محسوب می شوند. کریس مونرو گفته است: اتم کادمیم در هریک از این حالات که باشد می تواند هزاران سال در همان حالت بماند.
اگر چه محاسبات کوانتومی تازه در ابتدای راه قرار دارد، اما آزمایش هایی انجام شده که در طی آن ها عملیات محاسبات کوانتومی روی تعداد بسیار کمی از کوبیت ها اجرا شده است. تحقیقات نظری و عملی در این زمینه ادامه دارد و بسیاری از موسسات دولتی و نظامی از تحقیقات در زمینه کامپیوترهای کوانتومی چه برای اهداف غیرنظامی و چه برای اهداف امنیتی (مثل تجزیه و تحلیل رمز، Cryptanalysis) حمایت می کنند.اگر کامپیوترهای کوانتومی در مقیاس بزرگ ساخته شوند، می توانند مسائل خاصی را با سرعت خیلی زیاد حل کنند (برای مثال الگوریتم شُور، Shor's Algorithm). البته باید توجه داشت که توابعی که توسط کامپیوترهای کلاسیک محاسبه پذیر (Computable) نیستند، توسط کامپیوترهای کوانتومی نیز محاسبه پذیر نخواهند بود. این کامپیوترها نظریه چرچ-تورینگ را رد نمی کنند. کامپیوترهای کوانتومی فقط برای ما سرعت بیشتر را به ارمغان می آورند.
تعریف سادهٔ نقطهٔ کوانتومی این است که یک ذره مادی کوچک، که افزایش یا کاهش یک الکترون خواص آن را به نحو ارزشمندی تغییر دهد.البته اتم ها نقطه کوانتومی محسوب می شوند، ولی توده های چندمولکولی نیز چنین اند. در زیست شیمی، نقاط کوانتومی گروه های اکسیداسیون-احیا خوانده می شوند.در نانوتکنولوژی به آن ها بیت های کوانتومی یا کیوبیت گفته می شود. اندازه آن ها در حد چند نانومتر است و از انواع مواد همچون سلنید کادمیوم -که رنگ های مختلفی را تولید می کند- ساخته می شوند. کاربردهای بالقوه آن ها در مخابرات و اپتیک است. نانوذرات فلورسنت -که تا پیش از تابش ماوراءبنفش نامرئی هستند- ساختار نانوبلوری قادر به تغییر رنگ از دیگر تعاریف آنهاست. نقاط کوانتومی از دیگر مواد فلورسنت انعطاف بیشتری دارد؛ لذا استفاده از آن ها در ساخت کامپیوترهای نانومقیاس بهره گیرنده از نور برای پردازش اطلاعات مناسب است.
رؤیای محاسبات ماشینی یا ماشینی که بتواند مسائل را در اشکال گوناگون حل کند کمتر از دو قرن است که زندگی بشر را به طور جدی دربر گرفته است. اگر از ابزارهایی نظیر چرتکه و برخی تلاش های پراکنده دیگر در این زمینه بگذریم، شاید بهترین شروع را بتوان به تلاش های «چارلز بابیج» و «بلز پاسکال» با ماشین محاسبه مکانیکی شان نسبت داد. با گذشت زمان و تا ابتدای قرن بیستم تلاش های زیادی جهت بهبود ماشین محاسب مکانیکی صورت گرفت که همه آن ها بر پایه ریاضیات دهدهی (decimal) بود، یعنی این ماشین ها محاسبات را همان طور که ما روی کاغذ انجام می دهیم انجام می دادند. اما تحول بزرگ در محاسبات ماشینی در ابتدای قرن بیستم شروع شد. این زمانی است که الگوریتم و مفهوم فرایندهای الگوریتمی (algorithmic processes) به سرعت در ریاضیات و به تدریج سایر علوم رشد کرد. ریاضیدانان شروع به معرفی سیستم های جدیدی برای پیاده سازی الگوریتمی کلی کردند که در نتیجه آن، سیستم های انتزاعی محاسباتی به وجود آمدند. در این میان سهم برخی بیشتر از سایرین بود.آنچه امروزه آن را دانش کامپیوتر یا الکترونیک دیجیتال می نامیم مرهون و مدیون کار ریاضیدان برجسته انگلیسی به نام «آلن تورینگ» (Alan Turing) است. وی مدلی ریاضی را ابداع کرد که آن را ماشین تورینگ می نامیم و اساس تکنولوژی دیجیتال در تمام سطوح آن است. وی با پیشنهاد استفاده از سیستم دودویی برای محاسبات به جای سیستم عددنویسی دهدهی که تا آن زمان در ماشین های مکانیکی مرسوم بود، انقلابی عظیم را در این زمینه به وجود آورد. پس از نظریه طلایی تورینگ، دیری نپایید که «جان فون نویمان» یکی دیگر از نظریه پردازان بزرگ قرن بیستم موفق شد ماشین محاسبه گری را بر پایه طرح تورینگ و با استفاده از قطعات و مدارات الکترونیکی ابتدایی بسازد. به این ترتیب دانش کامپیوتر به تدریج از ریاضیات جدا شد و امروزه خود زمینه ای مستقل و در تعامل با سایر علوم به شمار می رود. گیتهای پیشرفته، مدارات ابر مجتمع، منابع ذخیره و بازیابی بسیار حجیم و کوچک، افزایش تعداد عمل در واحد زمان و غیره از مهم ترین این پیشرفت ها در بخش سخت افزاری محسوب می شوند. در ۱۹۶۵ «گوردون مور» اظهار کرد که توان کامپیوترها هر دو سال دو برابر خواهد شد. در تمام این سال ها، تلاش عمده در جهت افزایش قدرت و سرعت عملیاتی در کنار کوچک سازی زیر ساختها و اجزای بنیادی بوده است. نظریه مور در دهه های ۶۰ و ۷۰ میلادی تقریباً درست بود. اما از ابتدای دهه ۸۰ میلادی و با سرعت گرفتن این پیشرفت ها، شبهات و پرسش هایی در محافل علمی مطرح شد که این کوچک سازی ها تا کجا می توانند ادامه پیدا کنند؟ کوچک کردن ترازیستورها و مجتمع کردن آن ها در فضای کمتر نمی تواند تا ابد ادامه داشته باشد زیرا در حدود ابعاد نانومتری اثرات کوانتومی از قبیل تونل زنی الکترونی بروز می کنند. گرچه همیشه تکنولوژی چندین گام بزرگ از نظریه عقب است، بسیاری از دانشمندان در زمینه های مختلف به فکر رفع این مشکل تا زمان رشد فناوری به حد مورد نظر افتادند. به این ترتیب بود که برای نخستین بار در سال ۱۹۸۲ «ریچارد فاینمن» معلم بزرگ فیزیک و برنده جایزه نوبل، پیشنهاد کرد که باید محاسبات را از دنیای دیجیتال وارد دنیای جدیدی به نام کوانتوم کرد که بسیار متفاوت از قبلی است و نه تنها مشکلات گذشته و محدودیت های موجود را بر طرف می سازد، بلکه افق های جدیدی را نیز به این مجموعه اضافه می کند. این پیشنهاد تا اوایل دهه ۹۰ میلادی مورد توجه جدی قرار نگرفت تا بالاخره در ۱۹۹۴ «پیتر شور» از آزمایشگاه AT&T در آمریکا نخستین گام را برای محقق کردن این آرزو برداشت. به این ترتیب ارتباط نوینی بین نظریه اطلاعات و مکانیک کوانتومی شروع به شکل گیری کرد که امروز آن را محاسبات کوانتومی یا محاسبات نانومتری (nano computing) می نامیم. در واقع هدف محاسبات کوانتومی یافتن روش هایی برای طراحی مجدد ادوات شناخته شده محاسبات (مانند گیت ها و ترانزیستورها) به گونه ایست که بتوانند تحت اثرات کوانتومی، که در محدوده ابعاد نانومتری و کوچکتر بروز می کنند، کار کنند.
wiki: رایانش کوانتومی