در نظریه احتمالات، نابرابری چبیشف، تضمین می کند که در هر نمونه تصادفی یا توزیع احتمال، «تقریباً تمامی» مقادیر، در نزدیکی میانگین خواهند بود. بطور دقیقتر این قضیه بیان می کند که حداکثر مقادیری که در هر توزیع می تواند بیش از k برابر انحراف معیار با میانگین فاصله داشته باشد، 1 k 2 {\displaystyle {\frac {1}{k^{2}}}} است. این نامساوی بسیار کاربردی است، چون می تواند برای هر توزیع دلخواهی به کار برده شود (جز مواردی که میانگین و واریانس نامعلوم اند). به عنوان مثال از این نامساوی برای اثبات قانون ضعیف اعداد بزرگ استفاده می شود.
عنوان نامساوی از نام ریاضیدان روسی پافنوتی چبیشف، گرفته شده است، اگرچه در ابتدا نامساوی توسط دوست و همکلاسش فرموله شد. این نامساوی را می توان به صورت کاملاً کلی با کمک نظریه اندازه، بیان کرد.
اگر (X، Σ، μ) یک فضای اندازه و ƒ یک تابع اندازه پذیر با مقادیر حقیقی گسترش یافته، تعریف شده بر X باشد، آنگاه:
بطور کلی، اگر g یک تابع اندازه پذیر با مقادیر حقیقی گسترش یافته، نامنفی و غیر نزولی روی برد ƒ باشد، آنگاه:
عنوان نامساوی از نام ریاضیدان روسی پافنوتی چبیشف، گرفته شده است، اگرچه در ابتدا نامساوی توسط دوست و همکلاسش فرموله شد. این نامساوی را می توان به صورت کاملاً کلی با کمک نظریه اندازه، بیان کرد.
اگر (X، Σ، μ) یک فضای اندازه و ƒ یک تابع اندازه پذیر با مقادیر حقیقی گسترش یافته، تعریف شده بر X باشد، آنگاه:
بطور کلی، اگر g یک تابع اندازه پذیر با مقادیر حقیقی گسترش یافته، نامنفی و غیر نزولی روی برد ƒ باشد، آنگاه:
wiki: نابرابری چبیشف