عدد طبیعی مثبت n قدرتمند است اگر به ازای هر عدد اول p که n را عاد می کند، عدد p 2 {\displaystyle p^{2}} نیز n را عاد کند. می توان نشان داد هر عدد قدرتمند مانند m را می توان به صورت a 2 b 3 {\displaystyle a^{2}b^{3}} نوشت که a, b هر دو اعدادی طبیعی هستند.
گولومب نشان داد که هیچ زوج عدد قدرتمند به صورت (4k-1,4k+1) وجود ندارد و همچنین فهمید در صورت وجود ۳ عدد متوالی قدرتمند این ۳ عدد باید به صورت (4k-1,4k.4k+1) باشند.
گرنویل نشان داد که اگر قضیه مولین و والاش درست باشد انگاه بی نهایت عدد اول p وجود دارد که p 2 {\displaystyle p^{2}} مضربی از 2 p − 2 {\displaystyle 2^{p}-2} نباشد.
در زیر فهرستی از اعداد قدرتمند کوچکتر از ۱۰۰۰ را می بینیم:
۱, ۴, ۸, ۹, ۱۶, ۲۵, ۲۷, ۳۲, ۳۶, ۴۹, ۶۴, ۷۲, ۸۱, ۱۰۰, ۱۰۸, ۱۲۱, ۱۲۵, ۱۲۸, ۱۴۴, ۱۶۹, ۱۹۶, ۲۰۰, ۲۱۶, ۲۲۵, ۲۴۳, ۲۵۶, ۲۸۸, ۲۸۹, ۳۲۴, ۳۴۳, ۳۶۱, ۳۹۲, ۴۰۰, ۴۳۲, ۴۴۱, ۴۸۴, ۵۰۰, ۵۱۲, ۵۲۹, ۵۷۶, ۶۲۵, ۶۴۸, ۶۷۵, ۶۷۶, ۷۲۹, ۷۸۴, ۸۰۰, ۸۴۱, ۸۶۴, ۹۰۰, ۹۶۱, ۹۶۸, ۹۷۲، و ۱۰۰۰.
همچنین جفت های متوالی از اعداد قدرتمند وجود دارد:
گولومب نشان داد که هیچ زوج عدد قدرتمند به صورت (4k-1,4k+1) وجود ندارد و همچنین فهمید در صورت وجود ۳ عدد متوالی قدرتمند این ۳ عدد باید به صورت (4k-1,4k.4k+1) باشند.
گرنویل نشان داد که اگر قضیه مولین و والاش درست باشد انگاه بی نهایت عدد اول p وجود دارد که p 2 {\displaystyle p^{2}} مضربی از 2 p − 2 {\displaystyle 2^{p}-2} نباشد.
در زیر فهرستی از اعداد قدرتمند کوچکتر از ۱۰۰۰ را می بینیم:
۱, ۴, ۸, ۹, ۱۶, ۲۵, ۲۷, ۳۲, ۳۶, ۴۹, ۶۴, ۷۲, ۸۱, ۱۰۰, ۱۰۸, ۱۲۱, ۱۲۵, ۱۲۸, ۱۴۴, ۱۶۹, ۱۹۶, ۲۰۰, ۲۱۶, ۲۲۵, ۲۴۳, ۲۵۶, ۲۸۸, ۲۸۹, ۳۲۴, ۳۴۳, ۳۶۱, ۳۹۲, ۴۰۰, ۴۳۲, ۴۴۱, ۴۸۴, ۵۰۰, ۵۱۲, ۵۲۹, ۵۷۶, ۶۲۵, ۶۴۸, ۶۷۵, ۶۷۶, ۷۲۹, ۷۸۴, ۸۰۰, ۸۴۱, ۸۶۴, ۹۰۰, ۹۶۱, ۹۶۸, ۹۷۲، و ۱۰۰۰.
همچنین جفت های متوالی از اعداد قدرتمند وجود دارد:
wiki: عدد قدرتمند